A Correlation Approach for Automatic Image Annotation
نویسندگان
چکیده
The automatic annotation of images presents a particularly complex problem for machine learning researchers. In this work we experiment with semantic models and multi-class learning for the automatic annotation of query images. We represent the images using scale invariant transformation descriptors in order to account for similar objects appearing at slightly different scales and transformations. The resulting descriptors are utilised as visual terms for each image. We first aim to annotate query images by retrieving images that are similar to the query image. This approach uses the analogy that similar images would be annotated similarly as well. We then propose an image annotation method that learns a direct mapping from image descriptors to keywords. We compare the semantic based methods of Latent Semantic Indexing and Kernel Canonical Correlation Analysis (KCCA), as well as using a recently proposed vector label based learning method known as Maximum Margin Robot.
منابع مشابه
Fuzzy Neighbor Voting for Automatic Image Annotation
With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...
متن کاملTags Re-ranking Using Multi-level Features in Automatic Image Annotation
Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...
متن کاملScalable Image Annotation by Summarizing Training Samples into Labeled Prototypes
By increasing the number of images, it is essential to provide fast search methods and intelligent filtering of images. To handle images in large datasets, some relevant tags are assigned to each image to for describing its content. Automatic Image Annotation (AIA) aims to automatically assign a group of keywords to an image based on visual content of the image. AIA frameworks have two main sta...
متن کاملA CAD System Framework for the Automatic Diagnosis and Annotation of Histological and Bone Marrow Images
Due to ever increasing of medical images data in the world’s medical centers and recent developments in hardware and technology of medical imaging, necessity of medical data software analysis is needed. Equipping medical science with intelligent tools in diagnosis and treatment of illnesses has resulted in reduction of physicians’ errors and physical and financial damages. In this article we pr...
متن کاملAutomatic Image Annotation Using Modified Multi-label Dictionary Learning
Automatic image annotation has attracted lots of research interest, and effective method for image annotation. Find effectively the correlation among labels and images is a critical task for multi-label learning. Most of the existing multi-label learning methods exploit the label correlation only in the output label space, leaving the connection between label and features of images untouched. I...
متن کامل